Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600391

RESUMO

A major limitation of chimeric antigen receptor (CAR) T cell therapies is the poor persistence of these cells in vivo1. The expression of memory-associated genes in CAR T cells is linked to their long-term persistence in patients and clinical efficacy2-6, suggesting that memory programs may underpin durable CAR T cell function. Here we show that the transcription factor FOXO1 is responsible for promoting memory and restraining exhaustion in human CAR T cells. Pharmacological inhibition or gene editing of endogenous FOXO1 diminished the expression of memory-associated genes, promoted an exhaustion-like phenotype and impaired the antitumour activity of CAR T cells. Overexpression of FOXO1 induced a gene-expression program consistent with T cell memory and increased chromatin accessibility at FOXO1-binding motifs. CAR T cells that overexpressed FOXO1 retained their function, memory potential and metabolic fitness in settings of chronic stimulation, and exhibited enhanced persistence and tumour control in vivo. By contrast, overexpression of TCF1 (encoded by TCF7) did not enforce canonical memory programs or enhance the potency of CAR T cells. Notably, FOXO1 activity correlated with positive clinical outcomes of patients treated with CAR T cells or tumour-infiltrating lymphocytes, underscoring the clinical relevance of FOXO1 in cancer immunotherapy. Our results show that overexpressing FOXO1 can increase the antitumour activity of human CAR T cells, and highlight memory reprogramming as a broadly applicable approach for optimizing therapeutic T cell states.

3.
bioRxiv ; 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38496446

RESUMO

3-dimensional (3D) genome conformation is central to gene expression regulation, yet our understanding of its contribution to rapid transcriptional responses, signal integration, and memory in immune cells is limited. Here, we study the molecular regulation of the inflammatory response in primary macrophages using integrated transcriptomic, epigenomic, and chromosome conformation data, including base pair-resolution Micro-Capture C. We demonstrate that interleukin-4 (IL-4) primes the inflammatory response in macrophages by stably rewiring 3D genome conformation, juxtaposing endotoxin-, interferon-gamma-, and dexamethasone-responsive enhancers in close proximity to their cognate gene promoters. CRISPR-based perturbations of enhancer-promoter contacts or CCCTC-binding factor (CTCF) boundary elements demonstrated that IL-4-driven conformation changes are indispensable for enhanced and synergistic endotoxin-induced transcriptional responses, as well as transcriptional memory following stimulus removal. Moreover, transcriptional memory mediated by changes in chromosome conformation often occurred in the absence of changes in chromatin accessibility or histone modifications. Collectively, these findings demonstrate that rapid and memory transcriptional responses to immunological stimuli are encoded in the 3D genome.

4.
Cancer Cell ; 42(2): 266-282.e8, 2024 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-38278150

RESUMO

Adenosine (Ado) mediates immune suppression in the tumor microenvironment and exhausted CD8+ CAR-T cells express CD39 and CD73, which mediate proximal steps in Ado generation. Here, we sought to enhance CAR-T cell potency by knocking out CD39, CD73, or adenosine receptor 2a (A2aR) but observed only modest effects. In contrast, overexpression of Ado deaminase (ADA-OE), which metabolizes Ado to inosine (INO), induced stemness and enhanced CAR-T functionality. Similarly, CAR-T cell exposure to INO augmented function and induced features of stemness. INO induced profound metabolic reprogramming, diminishing glycolysis, increasing mitochondrial and glycolytic capacity, glutaminolysis and polyamine synthesis, and reprogrammed the epigenome toward greater stemness. Clinical scale manufacturing using INO generated enhanced potency CAR-T cell products meeting criteria for clinical dosing. These results identify INO as a potent modulator of CAR-T cell metabolism and epigenetic stemness programming and deliver an enhanced potency platform for cell manufacturing.


Assuntos
Inosina , Linfócitos T , Humanos , Linfócitos T/metabolismo
5.
bioRxiv ; 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37961138

RESUMO

Oncogene amplification on extrachromosomal DNA (ecDNA) is a pervasive driver event in cancer, yet our understanding of how ecDNA forms is limited. Here, we couple a CRISPR-based method for induction of ecDNA with extensive characterization of newly formed ecDNA to examine ecDNA biogenesis. We find that DNA circularization is efficient, irrespective of 3D genome context, with formation of a 1 Mb and 1.8 Mb ecDNA both reaching 15%. We show non-homologous end joining and microhomology mediated end joining both contribute to ecDNA formation, while inhibition of DNA-PKcs and ATM have opposing impacts on ecDNA formation. EcDNA and the corresponding chromosomal excision scar form at significantly different rates and respond differently to DNA-PKcs and ATM inhibition. Taken together, our results support a model of ecDNA formation in which double strand break ends dissociate from their legitimate ligation partners prior to joining of illegitimate ends to form the ecDNA and excision scar.

6.
Res Sq ; 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37986944

RESUMO

Poor CAR T persistence limits CAR T cell therapies for B cell malignancies and solid tumors1,2. The expression of memory-associated genes such as TCF7 (protein name TCF1) is linked to response and long-term persistence in patients3-7, thereby implicating memory programs in therapeutic efficacy. Here, we demonstrate that the pioneer transcription factor, FOXO1, is responsible for promoting memory programs and restraining exhaustion in human CAR T cells. Pharmacologic inhibition or gene editing of endogenous FOXO1 in human CAR T cells diminished the expression of memory-associated genes, promoted an exhaustion-like phenotype, and impaired antitumor activity in vitro and in vivo. FOXO1 overexpression induced a gene expression program consistent with T cell memory and increased chromatin accessibility at FOXO1 binding motifs. FOXO1-overexpressing cells retained function, memory potential, and metabolic fitness during settings of chronic stimulation and exhibited enhanced persistence and antitumor activity in vivo. In contrast, TCF1 overexpression failed to enforce canonical memory programs or enhance CAR T cell potency. Importantly, endogenous FOXO1 activity correlated with CAR T and TIL responses in patients, underscoring its clinical relevance in cancer immunotherapy. Our results demonstrate that memory reprogramming through FOXO1 can enhance the persistence and potency of human CAR T cells and highlights the utility of pioneer factors, which bind condensed chromatin and induce local epigenetic remodeling, for optimizing therapeutic T cell states.

7.
Nature ; 623(7987): 608-615, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37938768

RESUMO

Cell therapies have yielded durable clinical benefits for patients with cancer, but the risks associated with the development of therapies from manipulated human cells are understudied. For example, we lack a comprehensive understanding of the mechanisms of toxicities observed in patients receiving T cell therapies, including recent reports of encephalitis caused by reactivation of human herpesvirus 6 (HHV-6)1. Here, through petabase-scale viral genomics mining, we examine the landscape of human latent viral reactivation and demonstrate that HHV-6B can become reactivated in cultures of human CD4+ T cells. Using single-cell sequencing, we identify a rare population of HHV-6 'super-expressors' (about 1 in 300-10,000 cells) that possess high viral transcriptional activity, among research-grade allogeneic chimeric antigen receptor (CAR) T cells. By analysing single-cell sequencing data from patients receiving cell therapy products that are approved by the US Food and Drug Administration2 or are in clinical studies3-5, we identify the presence of HHV-6-super-expressor CAR T cells in patients in vivo. Together, the findings of our study demonstrate the utility of comprehensive genomics analyses in implicating cell therapy products as a potential source contributing to the lytic HHV-6 infection that has been reported in clinical trials1,6-8 and may influence the design and production of autologous and allogeneic cell therapies.


Assuntos
Linfócitos T CD4-Positivos , Herpesvirus Humano 6 , Imunoterapia Adotiva , Receptores de Antígenos Quiméricos , Ativação Viral , Latência Viral , Humanos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , Ensaios Clínicos como Assunto , Regulação Viral da Expressão Gênica , Genômica , Herpesvirus Humano 6/genética , Herpesvirus Humano 6/isolamento & purificação , Herpesvirus Humano 6/fisiologia , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Encefalite Infecciosa/complicações , Encefalite Infecciosa/virologia , Receptores de Antígenos Quiméricos/imunologia , Infecções por Roseolovirus/complicações , Infecções por Roseolovirus/virologia , Análise da Expressão Gênica de Célula Única , Carga Viral
8.
Cell ; 186(19): 4216-4234.e33, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37714135

RESUMO

Chronic stimulation can cause T cell dysfunction and limit the efficacy of cellular immunotherapies. Improved methods are required to compare large numbers of synthetic knockin (KI) sequences to reprogram cell functions. Here, we developed modular pooled KI screening (ModPoKI), an adaptable platform for modular construction of DNA KI libraries using barcoded multicistronic adaptors. We built two ModPoKI libraries of 100 transcription factors (TFs) and 129 natural and synthetic surface receptors (SRs). Over 30 ModPoKI screens across human TCR- and CAR-T cells in diverse conditions identified a transcription factor AP4 (TFAP4) construct that enhanced fitness of chronically stimulated CAR-T cells and anti-cancer function in vitro and in vivo. ModPoKI's modularity allowed us to generate an ∼10,000-member library of TF combinations. Non-viral KI of a combined BATF-TFAP4 polycistronic construct enhanced fitness. Overexpressed BATF and TFAP4 co-occupy and regulate key gene targets to reprogram T cell function. ModPoKI facilitates the discovery of complex gene constructs to program cellular functions.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Exercício Físico , Humanos , Biblioteca Gênica , Imunoterapia , Pesquisa
9.
bioRxiv ; 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37162847

RESUMO

Adenosine (Ado) mediates immune suppression in the tumor microenvironment and exhausted CD8+ CAR T cells mediate Ado-induced immunosuppression through CD39/73-dependent Ado production. Knockout of CD39, CD73 or A2aR had modest effects on exhausted CAR T cells, whereas overexpression of Ado deaminase (ADA), which metabolizes Ado to inosine (INO), induced stemness features and potently enhanced functionality. Similarly, and to a greater extent, exposure of CAR T cells to INO augmented CAR T cell function and induced hallmark features of T cell stemness. INO induced a profound metabolic reprogramming, diminishing glycolysis and increasing oxidative phosphorylation, glutaminolysis and polyamine synthesis, and modulated the epigenome toward greater stemness. Clinical scale manufacturing using INO generated enhanced potency CAR T cell products meeting criteria for clinical dosing. These data identify INO as a potent modulator of T cell metabolism and epigenetic stemness programming and deliver a new enhanced potency platform for immune cell manufacturing.

10.
Nat Commun ; 14(1): 2685, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-37164949

RESUMO

Cancer immunotherapies have revolutionized treatment but have shown limited success as single-agent therapies highlighting the need to understand the origin, assembly, and dynamics of heterogeneous tumor immune niches. Here, we use single-cell and imaging-based spatial analysis to elucidate three microenvironmental neighborhoods surrounding the heterogeneous basal cell carcinoma tumor epithelia. Within the highly proliferative neighborhood, we find that TREM2+ skin cancer-associated macrophages (SCAMs) support the proliferation of a distinct tumor epithelial population through an immunosuppression-independent manner via oncostatin-M/JAK-STAT3 signaling. SCAMs represent a unique tumor-specific TREM2+ population defined by VCAM1 surface expression that is not found in normal homeostatic skin or during wound healing. Furthermore, SCAMs actively proliferate and self-propagate through multiple serial tumor passages, indicating long-term potential. The tumor rapidly drives SCAM differentiation, with intratumoral injections sufficient to instruct naive bone marrow-derived monocytes to polarize within days. This work provides mechanistic insights into direct tumor-immune niche dynamics independent of immunosuppression, providing the basis for potential combination tumor therapies.


Assuntos
Carcinoma Basocelular , Neoplasias Cutâneas , Humanos , Macrófagos/metabolismo , Monócitos , Carcinogênese/metabolismo , Carcinoma Basocelular/metabolismo , Transdução de Sinais , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores Imunológicos/metabolismo
11.
Nature ; 616(7958): 755-763, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37046083

RESUMO

Mutations in a diverse set of driver genes increase the fitness of haematopoietic stem cells (HSCs), leading to clonal haematopoiesis1. These lesions are precursors for blood cancers2-6, but the basis of their fitness advantage remains largely unknown, partly owing to a paucity of large cohorts in which the clonal expansion rate has been assessed by longitudinal sampling. Here, to circumvent this limitation, we developed a method to infer the expansion rate from data from a single time point. We applied this method to 5,071 people with clonal haematopoiesis. A genome-wide association study revealed that a common inherited polymorphism in the TCL1A promoter was associated with a slower expansion rate in clonal haematopoiesis overall, but the effect varied by driver gene. Those carrying this protective allele exhibited markedly reduced growth rates or prevalence of clones with driver mutations in TET2, ASXL1, SF3B1 and SRSF2, but this effect was not seen in clones with driver mutations in DNMT3A. TCL1A was not expressed in normal or DNMT3A-mutated HSCs, but the introduction of mutations in TET2 or ASXL1 led to the expression of TCL1A protein and the expansion of HSCs in vitro. The protective allele restricted TCL1A expression and expansion of mutant HSCs, as did experimental knockdown of TCL1A expression. Forced expression of TCL1A promoted the expansion of human HSCs in vitro and mouse HSCs in vivo. Our results indicate that the fitness advantage of several commonly mutated driver genes in clonal haematopoiesis may be mediated by TCL1A activation.


Assuntos
Hematopoiese Clonal , Células-Tronco Hematopoéticas , Animais , Humanos , Camundongos , Alelos , Hematopoiese Clonal/genética , Estudo de Associação Genômica Ampla , Hematopoese/genética , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Mutação , Regiões Promotoras Genéticas
12.
Mol Cell ; 83(1): 121-138.e7, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36521490

RESUMO

Cell cycle (CC) facilitates cell division via robust, cyclical gene expression. Protective immunity requires the expansion of pathogen-responsive cell types, but whether CC confers unique gene expression programs that direct the subsequent immunological response remains unclear. Here, we demonstrate that single macrophages (MFs) adopt different plasticity states in CC, which leads to heterogeneous cytokine-induced polarization, priming, and repolarization programs. Specifically, MF plasticity to interferon gamma (IFNG) is substantially reduced during S-G2/M, whereas interleukin 4 (IL-4) induces S-G2/M-biased gene expression, mediated by CC-biased enhancers. Additionally, IL-4 polarization shifts the CC-phase distribution of MFs toward the G2/M phase, providing a subpopulation-specific mechanism for IL-4-induced, dampened IFNG responsiveness. Finally, we demonstrate CC-dependent MF responses in murine and human disease settings in vivo, including Th2-driven airway inflammation and pulmonary fibrosis, where MFs express an S-G2/M-biased tissue remodeling gene program. Therefore, MF inflammatory and regenerative responses are gated by CC in a cyclical, phase-dependent manner.


Assuntos
Cromatina , Interleucina-4 , Humanos , Camundongos , Animais , Interleucina-4/genética , Interleucina-4/farmacologia , Cromatina/genética , Cromatina/metabolismo , Macrófagos/metabolismo , Interferon gama/genética , Interferon gama/farmacologia , Ciclo Celular/genética , Divisão Celular
13.
Int J Mol Sci ; 25(1)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38203607

RESUMO

The genome of human adipose-derived stem cells (ADSCs) from abdominal and gluteofemoral adipose tissue depots are maintained in depot-specific stable epigenetic conformations that influence cell-autonomous gene expression patterns and drive unique depot-specific functions. The traditional approach to explore tissue-specific transcriptional regulation has been to correlate differential gene expression to the nearest-neighbor linear-distance regulatory region defined by associated chromatin features including open chromatin status, histone modifications, and DNA methylation. This has provided important information; nonetheless, the approach is limited because of the known organization of eukaryotic chromatin into a topologically constrained three-dimensional network. This network positions distal regulatory elements in spatial proximity with gene promoters which are not predictable based on linear genomic distance. In this work, we capture long-range chromatin interactions using HiChIP to identify remote genomic regions that influence the differential regulation of depot-specific genes in ADSCs isolated from different adipose depots. By integrating these data with RNA-seq results and histone modifications identified by ChIP-seq, we uncovered distal regulatory elements that influence depot-specific gene expression in ADSCs. Interestingly, a subset of the HiChIP-defined chromatin loops also provide previously unknown connections between waist-to-hip ratio GWAS variants with genes that are known to significantly influence ADSC differentiation and adipocyte function.


Assuntos
Adipócitos , Ascomicetos , Humanos , Regiões Promotoras Genéticas , Tecido Adiposo , Cromatina/genética , Células-Tronco
14.
J Immunol ; 209(10): 1930-1941, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36426944

RESUMO

The antiviral state, an initial line of defense against viral infection, is established by a set of IFN-stimulated genes (ISGs) encoding antiviral effector proteins. The effector ISGs are transcriptionally regulated by type I IFNs mainly via activation of IFN-stimulated gene factor 3 (ISGF3). In this study, the regulatory elements of effector ISGs were characterized to determine the (epi)genetic features that enable their robust induction by type I IFNs in multiple cell types. We determined the location of regulatory elements, the DNA motifs, the occupancy of ISGF3 subunits (IRF9, STAT1, and STAT2) and other transcription factors, and the chromatin accessibility of 37 effector ISGs in murine dendritic cells. The IFN-stimulated response element (ISRE) and its tripartite version occurred most frequently in the regulatory elements of effector ISGs than in any other tested ISG subsets. Chromatin accessibility at their promoter regions was similar to most other ISGs but higher than at the promoters of inflammation-related cytokines, which were used as a reference gene set. Most effector ISGs (81.1%) had at least one ISGF3 binding region proximal to the transcription start site (TSS), and only a subset of effector ISGs (24.3%) was associated with three or more ISGF3 binding regions. The IRF9 signals were typically higher, and ISRE motifs were "stronger" (more similar to the canonical sequence) in TSS-proximal versus TSS-distal regulatory regions. Moreover, most TSS-proximal regulatory regions were accessible before stimulation in multiple cell types. Our results indicate that "strong" ISRE motifs and universally accessible promoter regions that permit robust, widespread induction are characteristic features of effector ISGs.


Assuntos
Fatores de Restrição Antivirais , Cromatina , Animais , Camundongos , Cromatina/genética , Motivos de Nucleotídeos , Regiões Promotoras Genéticas/genética , Elementos de Resposta/genética , Interferons/metabolismo
15.
Immunity ; 55(11): 2006-2026.e6, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36323312

RESUMO

Prior exposure to microenvironmental signals could fundamentally change the response of macrophages to subsequent stimuli. It is believed that T helper-2 (Th2)-cell-type cytokine interleukin-4 (IL-4) and Toll-like receptor (TLR) ligand-activated transcriptional programs mutually antagonize each other, and no remarkable convergence has been identified between them. In contrast, here, we show that IL-4-polarized macrophages established a hyperinflammatory gene expression program upon lipopolysaccharide (LPS) exposure. This phenomenon, which we termed extended synergy, was supported by IL-4-directed epigenomic remodeling, LPS-activated NF-κB-p65 cistrome expansion, and increased enhancer activity. The EGR2 transcription factor contributed to the extended synergy in a macrophage-subtype-specific manner. Consequently, the previously alternatively polarized macrophages produced increased amounts of immune-modulatory factors both in vitro and in vivo in a murine Th2 cell-type airway inflammation model upon LPS exposure. Our findings establish that IL-4-induced epigenetic reprogramming is responsible for the development of inflammatory hyperresponsiveness to TLR activation and contributes to lung pathologies.


Assuntos
Interleucina-4 , Lipopolissacarídeos , Camundongos , Animais , Interleucina-4/metabolismo , Lipopolissacarídeos/metabolismo , Ligantes , Epigenômica , Macrófagos/metabolismo , Receptores Toll-Like/metabolismo , Epigênese Genética , NF-kappa B/metabolismo
16.
Science ; 378(6620): eabn5647, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36356142

RESUMO

T cells are the major arm of the immune system responsible for controlling and regressing cancers. To identify genes limiting T cell function, we conducted genome-wide CRISPR knockout screens in human chimeric antigen receptor (CAR) T cells. Top hits were MED12 and CCNC, components of the Mediator kinase module. Targeted MED12 deletion enhanced antitumor activity and sustained the effector phenotype in CAR- and T cell receptor-engineered T cells, and inhibition of CDK8/19 kinase activity increased expansion of nonengineered T cells. MED12-deficient T cells manifested increased core Meditator chromatin occupancy at transcriptionally active enhancers-most notably for STAT and AP-1 transcription factors-and increased IL2RA expression and interleukin-2 sensitivity. These results implicate Mediator in T cell effector programming and identify the kinase module as a target for enhancing potency of antitumor T cell responses.


Assuntos
Ciclina C , Complexo Mediador , Neoplasias , Receptores de Antígenos Quiméricos , Linfócitos T , Humanos , Quinase 8 Dependente de Ciclina/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Complexo Mediador/genética , Linfócitos T/imunologia , Fatores de Transcrição/genética , Estudo de Associação Genômica Ampla , Ciclina C/genética , Testes Genéticos , Imunoterapia Adotiva , Neoplasias/imunologia , Neoplasias/terapia
17.
Nat Immunol ; 23(11): 1614-1627, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36289450

RESUMO

Chronic antigen exposure during viral infection or cancer promotes an exhausted T cell (Tex) state with reduced effector function. However, whether all antigen-specific T cell clones follow the same Tex differentiation trajectory remains unclear. Here, we generate a single-cell multiomic atlas of T cell exhaustion in murine chronic viral infection that redefines Tex phenotypic diversity, including two late-stage Tex subsets with either a terminal exhaustion (Texterm) or a killer cell lectin-like receptor-expressing cytotoxic (TexKLR) phenotype. We use paired single-cell RNA and T cell receptor sequencing to uncover clonal differentiation trajectories of Texterm-biased, TexKLR-biased or divergent clones that acquire both phenotypes. We show that high T cell receptor signaling avidity correlates with Texterm, whereas low avidity correlates with effector-like TexKLR fate. Finally, we identify similar clonal differentiation trajectories in human tumor-infiltrating lymphocytes. These findings reveal clonal heterogeneity in the T cell response to chronic antigen that influences Tex fates and persistence.


Assuntos
Linfócitos T CD8-Positivos , Viroses , Humanos , Camundongos , Animais , Receptores de Antígenos de Linfócitos T/genética , Diferenciação Celular , Linfócitos do Interstício Tumoral
18.
Nature ; 609(7925): 174-182, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36002574

RESUMO

The efficacy of adoptive T cell therapies for cancer treatment can be limited by suppressive signals from both extrinsic factors and intrinsic inhibitory checkpoints1,2. Targeted gene editing has the potential to overcome these limitations and enhance T cell therapeutic function3-10. Here we performed multiple genome-wide CRISPR knock-out screens under different immunosuppressive conditions to identify genes that can be targeted to prevent T cell dysfunction. These screens converged on RASA2, a RAS GTPase-activating protein (RasGAP) that we identify as a signalling checkpoint in human T cells, which is downregulated upon acute T cell receptor stimulation and can increase gradually with chronic antigen exposure. RASA2 ablation enhanced MAPK signalling and chimeric antigen receptor (CAR) T cell cytolytic activity in response to target antigen. Repeated tumour antigen stimulations in vitro revealed that RASA2-deficient T cells show increased activation, cytokine production and metabolic activity compared with control cells, and show a marked advantage in persistent cancer cell killing. RASA2-knockout CAR T cells had a competitive fitness advantage over control cells in the bone marrow in a mouse model of leukaemia. Ablation of RASA2 in multiple preclinical models of T cell receptor and CAR T cell therapies prolonged survival in mice xenografted with either liquid or solid tumours. Together, our findings highlight RASA2 as a promising target to enhance both persistence and effector function in T cell therapies for cancer treatment.


Assuntos
Antígenos de Neoplasias , Neoplasias , Linfócitos T , Proteínas Ativadoras de ras GTPase , Animais , Antígenos de Neoplasias/imunologia , Medula Óssea , Sistemas CRISPR-Cas , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Humanos , Imunoterapia Adotiva , Leucemia/imunologia , Leucemia/patologia , Leucemia/terapia , Camundongos , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Fatores de Tempo , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas Ativadoras de ras GTPase/deficiência , Proteínas Ativadoras de ras GTPase/genética
19.
Cancer Cell ; 40(7): 768-786.e7, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35750052

RESUMO

T cell exhaustion limits antitumor immunity, but the molecular determinants of this process remain poorly understood. Using a chronic stimulation assay, we performed genome-wide CRISPR-Cas9 screens to systematically discover regulators of T cell exhaustion, which identified an enrichment of epigenetic factors. In vivo CRISPR screens in murine and human tumor models demonstrated that perturbation of the INO80 and BAF chromatin remodeling complexes improved T cell persistence in tumors. In vivo Perturb-seq revealed distinct transcriptional roles of each complex and that depletion of canonical BAF complex members, including Arid1a, resulted in the maintenance of an effector program and downregulation of exhaustion-related genes in tumor-infiltrating T cells. Finally, Arid1a depletion limited the acquisition of exhaustion-associated chromatin accessibility and led to improved antitumor immunity. In summary, we provide an atlas of the genetic regulators of T cell exhaustion and demonstrate that modulation of epigenetic state can improve T cell responses in cancer immunotherapy.


Assuntos
Montagem e Desmontagem da Cromatina , Neoplasias , Animais , Cromatina/genética , Montagem e Desmontagem da Cromatina/genética , Epigenômica , Humanos , Camundongos , Neoplasias/genética , Linfócitos T
20.
Immunity ; 55(7): 1200-1215.e6, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35637103

RESUMO

Soon after activation, CD4+ T cells are segregated into BCL6+ follicular helper (Tfh) and BCL6- effector (Teff) T cells. Here, we explored how these subsets are maintained during chronic antigen stimulation using the mouse chronic LCMV infection model. Using single cell-transcriptomic and epigenomic analyses, we identified a population of PD-1+ TCF-1+ CD4+ T cells with memory-like features. TCR clonal tracing and adoptive transfer experiments demonstrated that these cells have self-renewal capacity and continue to give rise to both Teff and Tfh cells, thus functioning as progenitor cells. Conditional deletion experiments showed Bcl6-dependent development of these progenitors, which were essential for sustaining antigen-specific CD4+ T cell responses to chronic infection. An analogous CD4+ T cell population developed in draining lymph nodes in response to tumors. Our study reveals the heterogeneity and plasticity of CD4+ T cells during persistent antigen exposure and highlights their population dynamics through a stable, bipotent intermediate state.


Assuntos
Antígenos , Linfócitos T Auxiliares-Indutores , Transferência Adotiva , Animais , Diferenciação Celular , Camundongos , Proteínas Proto-Oncogênicas c-bcl-6/genética , Células-Tronco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...